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INTRODUCTION

This Final Technical Report constituies a summary of the
research performed under Grant N00014-80-J-1712 during the
period of April 1, 1990 through September 30, 1992. First we
present a list of the personnel involved in the research effort. Then
in the following section we present a brief summary of the research
results that have been achieved. Each of these results is well
documented in technical articles, and references to these articles
are made in the summary of the research results. We hope you find
these interesting.
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A SURVEY OF RESULTS

In this final technical report we will briefly comment upon our
research accomplishments sponsored by Grant N00014-90-J-1712.
Much of our work during this period was concerned with various
aspects of random fields. The principal subareas of research
activity may be characterized by the following:

Research in distributed estimation which might readily arise in a
typical estimation problem in the context of random felds,

Optimal estimation with respect to a large family of cost
functions,

Decentralized estimation with nontraditional fidelity criteria,

Multidimensional quantization which could arise in the effort to
quantize a random field,

Multidimensional convolution,

The concept of finite memory of a stochastic process or a random
field,

Distribution of the determinant of a random matrix,

Stationary random processes,

Zero-crossing rates for Gaussian processes,

Martingale characteristics of a Weiner process,

Estimation of a random variable based on multidimensional data,

Detection Theory versus Hypothesis Testing,

Importance Sampling

, and

Mutual Independence




A. Distributed Estimation

The results achieved in the area of distributed estimation are
found in Appendix A in the paper entitled, "Some Aspects of Fusion in
Estimation Theory," which appeared in the the March 1991 issue of
IEEE Transactions on Information Theory. In this paper we
considered the problem of fusion in estimation theory. We presented
several examples, using common distributions, in which virtually
any method of fusion would be useless in approximating the random
variable of interest. Further, we presented a theorem which for a
very general situation shows that fusion resulting in an almost
surely exact approximation is always possible. In particular, this
result addressed the situation in which the data consisted of the
random variable of interest corrupted by additive Gaussian noise and
the random variable of interest could be any second order random
variable. An example was presented which illustrates the utility of
this result.
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Some Aspects of Fusion in Estimation Theory
Eric B. Hall, Alan E. Wessel, and Gary L. Wise

Abstract —The problen of fusing or combining various estimates to
eobtain a single good estimate is investigated. Several examples are
presented in which virtually any method of fusion faiis. Finally, a very
general situation is considered and an example is presented in which
almost surely exact fusion is always possible.

Index Terms —Fusion, distributed estimation, conditional expectation.

{. INTRODUCTION

In this correspondence we consider the problem of fusion in
estimation theory. Our primary concern is directed toward find-
ing a method of fusing or combining a finite number of csti-
mates of a fixed second order random variable X in order to
achieve a single “best” estimate of X. Our concern throughout
this paper is directed toward minimizing the mean-square error
(mse). In this context, for an arbitrary probability space
(Q, %, P), we recall [1] that it is necessary to take versions of
conditional expectations which are Borel measurable functions
of the conditioned random variables, and we do so throughout
the correspondence.

As an exampie of fusion in estimation. if Y, and Y. arc
random variables, how might E[X1Y,] and E[ X1Y,] be fused 10
obtain a good approximation to E[X|Y,,Y,]. Notice that the
statistical knowledge required to calculate E{ XY, }and E{ X1Y,]
is less than that required to calculate E[X|Y,.Y,]. since E[XY,]
and E[XIY,] can be obtained from the appropriate bivariatc
distributions, whereas E{X1Y,.Y,] in general cannot. Also, Y,
and Y, might not be simultancously available to the person
desiring E[ X1Y,.Y,]. a situation occurring in the usual context
of distributed estimation in which a central location desires to
construct a good estimate based on the estimates obtained by a
set of spatially distinct ficld observers. Although other authors
have attempted to address the problem of fusion in estimation
theory (see for example [2]-{5]). many important questions in
this area have not been resolved. In this correspondence we
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place the problem of fusion in estimation theory an o ngorous
setting and address and answer several crucal guestons. For a
treatment of fusion via lincar combinations of best hinear est-
mates, of fusion via hinear combinations of best Borel measur-
able estimates, and for other comments on this general problem.
we refer the reader to [6].

1. Sosmt Disricvtrins aso Corrositas

We will now consider the general problem of fusion in which
a Borel measurable transformation of best L. Borel measurable
estimates is sought. In particular. if X s a second-order random
variable. if n is a positive integer. and of Y, Y. Y, are n
random variables. how may £l XY, ] E[X Y.L---. and E[X Y, ]}
be fused to approximate E[X!Y,. V..o - Y, }? In other words.
under what conditions is ECXIE[X YL E(X Y] E[XY,D
(the best L, estimate of X based on a Borel measurable
function of E[X{Y ] E[XiY,L- -, and E[XY, D a good ap-
proximation of E[XIY,.Y,.-- . ¥,]7 As the following examples
indicate, there are numerous subtleties that arise in this context.
For example. as will be seen. cven if

E[Xiy,}=E[xiV,]= - =E[X Y ]us.

E[X1Y,.Y,, - -.Y,) could be wildly different from E{X.Y,).

Example I: Let Q1 =[0.1], .%¥ denote the Borel subsets of ().
and P denote Lebesgue measure on % Let A be a positive real
number, olY) = o((0.1/2). al¥;) = all/4.3/4). and
Xlw)=A for w€{0,1/4)0U[1/2,3/4) and X(wi= - A4 for
well/4,1/2)U[3/4,1). Then 1t straightforwardhy follows that
EiX\V,1= E[X1Y,}=0 as, but E[X{Y,.Y.]= X. as. Notice
that in this special case, any linear combination of £] XY} and
E{ X1Y,] yields an estimate equal to 0 a.s.. resulting in a mse in
approximating X of A4°, which can excecd any preassigned
rcal number. Recalling that E[X1Y,] and E]X .Y.]. respec-
tively, are o(Y,)-measurable and a{Y,)-measurabic. we see that
EUX1Y,}= E[X1Y,)=0 pointwise in w: similarly. we sec that
E[X1Y,,Y.]1= X pointwise in w. Thus. in this sitwation. it is
fruitless to attempt to approximate X based on am function of
E[X1Y\}and E[XIY,]

Note that in Example 1. Y, and Y. arc independent. A and
Y, are independent, and X and Y, are independent. This might
have led an unwary investigator to perhaps assert thal
E{X|Y\.Y,]= E[ X]as.. or perhaps that E[ X!Y,.Y.]= E[ X V]
a.s. for i =1 or 2. Each of these assertions, which happen to be
cquivalent in the setting of Example |, is incotsect.

Note, also, that Example 1 concerned simple random varni-
ables. The phenomenon exhibited in Example 1. however. can
hold for nonsimple random variables as shown in the following
threc examples which involve more commonplace distributions
of random variables.

Example 2: Let Y, and ¥, he independent Guussian random
variables defined on the same probability space. cach having
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zero-mean and unit vaniance. Let X =Y,Y,. Then E{.V V¥ }=
E[X|Y,]=0as. whereas ELXY,,Y,]= X as.

Example 3: Let Y, and Y, be independent random variables
defined on the same probability space, such that ¥, is uniformly
distributed on {— 1 l] and Y, has a probability density function
given by f(x)=x"/27 exp(~ x*/2), and let X = Y\Y, Itcan
be shown that X has a Gaussian distribution with zero-mean
and unit variance (cf. [7, pp. 172, 176]). Then again E{X[Y,]=
E{X1Y.]=0as.. whereas E[X1Y,.Y,]= X as.

Example 4: For an integer n > 1, consider a set of random
variables {X,Y,.- - . Y,} with a joint probability density function
given, as in 8], by

1 el -1 " N
N e exp| —|x 7+ 1/
" (V;ZT‘— ) p[ 2 ( l»zl )}

[esor ()t )]

It follows straightforwardly that the set {X.Y,---,Y,} is not
mutually Gaussian and not mutuaily independent, yet any proper
subset of {X.Y,, - - Y,} containing at least two random variables
is muivally independent, mutually Gaussian, and identically
distributed with each random variable having zero-mean and
unit variance. For any nonempty proper subset 27 of {Y,.---. Y, ).
we note that E{X{Z]=0 as. since X is independent of .
However, it follows quickly that

Y]

Sy

E[XIY,. -

-1 . s >
“Yyexp| — (Y +Ys5+ - +Y7 )] as.

1
=—Y,
V2

Thus. since any Borel measurable function of the estimates
E[X{Z] where 2 ranges over all nonempty proper subscts of
{Y,.---,Y,} would be constant almost surely. it would not be
reasonable to attempt to estimate E[X|Y,.---,¥,] based on a
combination of thesc estimates.

Notice that in Example 2 the observations are Gaussian, and
in Example 3 the signal of interest is Gaussian. Further, in
Example 4 the signal of interest is Gaussian, the obser.ations
are mutually Gaussian, and the problem under consideration is
expanded to include fusion of estimates of the form E[X|Z),
where 2/ is any nonempty proper subset of the observations. In
each case, estimation of X via fusion is hopeless and even the
ubiquitous Gaussian assumption does not alleviate this diffi-
culty. However, as will be shown next, with an appropriate
restriction on the observations, almost surely exact fusion is
possible.

1. Fusion i~ a PracTicaL SETTING

Let (£, .5, P) be a fixed probability space on which all of the
following random variables will be dcfined, and let n be a
positive integer. We will now consider an approach motivated by
more practical concerns. The following notation will be used
throughout the remainder of this section. Let ¥, = X + N, where
X, N, Ny, -+, N, are mutually independent, N, represents addi-
tive noise, and X is a second-order random variable represent-
ing the signal of interest. As before, we consider the problem of
estimating X via some combination of the E{ X|Y,}s.

Assume that N\ N,,-- - N, each possesses a probability den-
sity function. Let F, denote the distribution function of X, and
f~ denote a Borel measurable density function of N,. Further,
notice that via a straightforward change of variable and using

ATONO 2MARCH w4t L

the independence assumption, we have that
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Now. in addition to these assumptions, assume that for cach
positive integer £ < 7. A has a zero-mean Gaussian distribution

with a positive varisnce denoted by o7 Notice that 1 this case,
choosing continuous versions of the density funchions, wo have
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where we define

and

K=

Al
—===|exp ———).
1=l y2wa~ |~ Al

Svkctitution into the previous expression for E{X:Y,. Y]
now implies that

. ~A( S
j;(.tcxp 3 x~:\~)
-‘A

chxp[—z—-(x-§-}]dF (1)

For the special case where X has a density given by
1/V2mo? exp(=x"/20%), we sce that FH Y. ».}',Jz
So? /(1 + Ac?) as. Furthermore, E[ X V)= Yo iar” *rr-)ax
Thus, we see that in this situation,

o]

02
- )E[,\':)j} 4
t=1 o, !

In other words, E[X1Y,.---.Y,]is cqual a.s. to a Borel measur-
able function of the E[ XY Ts for this case when X is Gaussian.
One might ask if such a result holds for any other distributions
on X. The following thcorem addresses this guestion and shows
that, in the context of the previous assumptions, almost surely
exact fusion is always possible for anv second-order random
variable X.

Theorem 1: Consider a probability space (2.7, /) and ran-
dom variables X, N, - -. N, defined on (). %. P)where mas a
positive intecger and X is a second-order random variable
Further. assume that for cach positive integer i< n, N, has
a zero-mean Gaussian distribution with positive variance gnen
by a7 and that X,N,. - N, are mutually independent.
Define ¥, = X + N, for i=1,---,n. Then there cxists a Borel
measurable function g: R” = R such that E[XY .- Y, ]=
g(EL XY, L - ELXIY, D as.

Proof: 1 X is as. equal to a constant. the result is obvious,
Assume that X is not almost surcly equal 1o a constant. Using
(1) it immediately follows that a version of the regression fune-

} dF, (1)

Elx1y,,

v,}=

as. (1)
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tion E[X|Y, = y]is given by

-x? oy
fxcxp —5 + — [dF,(x)
R 200 oS '

bt

doS°

- :
fcxp STt dF (x)
R o,

This version will be used throughout the remainder of the proof.
It now follows that

an example was presented that lustrates the utiity of this
result,
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Notice that the denominator of this expression is positive. Fur-
ther, the Schwarz inequality, which is a strict inequality since X
is not a.s. equal to a constant. implies that the numerator is also
positive. Thus, since d/dy E[X|Y, = y]> 0, we see that
E[X|Y, = y] is a strictly increasing function of y. Hence. there
exists a Borel measurable function g, so that g(E[ XY, =Y
a.s. Notice that
no
S= 3 =g (E[XIV]) as.

i=1 (7[
Thus, substitution of this expression for § into (1) provides a
Borel measurable function g: R” — R such that

E{xiY,.---. Y, =e(E[ XV, ] E[ XIY,).- - - L E[ X1V, ]) as.
a

Hence, Theorem 1 shows that almost surely exact fusion in
the setting under consideration is always possible. Notice again
that this result holds for any second-order random variable of
interest. We next present an exampie which serves to illustrate
the utility of Theorem 1.

Example 5: In the context of Theorem 1, let X =1 with
probability one half and let X = —1 with probability one half.
Then it straightforwardly follows that a version of E[ XY, = y)
is given by tanh(y /a®). Now, fixing this version and adopt-
ing the notation uscd earlier in this section, we have that
§=YL7 ,tanh ' (E[XIY,) as. Further. (1) simplifies to
ElX]Y,, --.Y,]=tanh(5) a.s. Hence. we see that

n
E[x1Y,.--.Y,]=tanh| ¥ tanh ' (E[ XIY,])| as.

i=1

Thus, in this case we have, as guaranteed by Theorem 1, a
precise expression where E[X|Y,, - -.Y,] is equal as. to a
specific Borel measurable transformation of the E[ X[Y,]'s.

IV. ConcrLusion

We considered the problem of fusion in estimation theory.
We presented several examples, using common distributions, in
which virtually any method of fusion would be useless in approx-
imating the random variable of interest. Further, we presented a
theorem which, for a very general situation, shows that fusion
resulting in an almost surely exact approximation is always
possible. In particular, this result addressed the situation in
which the data consisted of the random variable of interest
corrupted by additive Gaussian noise and the random variable
of interest could be any second-order random variable. Finally,

- x*+2

}‘IFA'(X )]
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B. Optimal Estimation with Respect to a Large Family of Cost
Functions

Our results pertaining to optimal estimation are found in
Appendix B in the article entitled, "On optimal estimation with
respect to a large family of cost functions,” which appeared in the
May 1991 issue of /IEEE Transactions on Information Theory. In this
article we considered the problem of optimal estimation of a random
variable X based on an observation denoted by a random vector Y. We
gave a mild restriction on the regular conditional distribution
function of X given o(Y) that ensures that E[®(X-g(Y))] is minimized
for any cost function @ that is nonnegative, even, and convex. We
showed that given any real valued Borel measurable function there
exist random variables X and Y, possessing a joint density function,
so that the chosen function is an optimal estimator, with respect to
any of the cost functions previously described, of the random
variable X based on the random variable Y. The results were then
extended to estimation of X based upon a random variable that is
measurable with respect to any given o-subalgebra.




On Optimal Estimation with Respect to a Large
Family of Cost Functions

Eric B. Hall and Gary L. Wise

Abstract —Consider itwo random variables X and Y. A commonly
encountered problem involves estimating X via #(Y) so as to minimize
E{P{(X - h(Y))} where & is Borel measurable and ¢ is & Borel measur-
able cost function chosen to adequately reflect the fidelity demands of
the problem under consideration. This correspondence places a mild
condition on the regular conditional distribution of X given o(Y) that
ensures that E{®P(X — A(Y )] is minimized for any cost function & that
is nonnegstive, even, and convex. In addition, it is shown that given any
Borel measurable function g° R — R, there exist random variables X
snd Y possessing a joint density function such that E[X|Y = y]= g(y)
a.¢e., with respect 1o Lebesgue measure.

Index Terms —Qptimal nonlinear estimation, non-mean-square-error
fidelity criteria, regression functions.

I. INTRODUCTION

In this correspondence we consider the problem of estimation
with respect to nontraditional cost functions. In an estimation
problem one is often confronted with two concerns in choosing a
cost function: the concern that the cost function adequately
reflects the cost one wishes to associate with an error, and the
concern that the cost function results in a problem which one
finds to be mathematically tractable. Traditional cost functions,
such as the quadratic cost function that is associated with the
extremely popular mean-square-error criterion, are usually cho-
sen solely on the basis of the second of these two concerns. As a
result, the fidelity demands of the specific problem under con-
sideration are rarely relied upon, and, in fact, are often not even
considered, when determining the cost function which will be
used. This sacrifice of suitability for mathematical ease in the
choice of a cost function should be the cause of some concern
since the traditional choices are unsuitable for many problems
in estimation. This correspondence lessens this problem by
extending the domrin of mathematical tractability to include
many cost functions that, even though pertinent to the subjec-
tive demands of many problems, have in the past been exciuded
from consideration.
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11. DevELOPMENT

In 1958, Seymour Sherman published a paper entitled "Non-
Mecan-Square Error Criteria” [1] in which he proposed condi-
tions on a conditional distribution that would allow for the
simultaneous minimization of a large family of cost functions. In
[2] we provided a proof of Sherman's proposal and explored
several extensions and practical consequences. Although Sher-
man’s result had been widely quoted prior 10 {2}, a correct proof
seems to have been elusive. For example, several proofs {3, pp.
308-210]; {4, pp. 10-12); {5, p. 61] using integration by parts
were attempted even though the conditions placed on the cost
function were insufficient to allow such a method to be used. (In
particular, the proofs referenced above may fail for X and Y
mutually Gaussian if a cost function ®: R —{0,=) is chosen
which is even, strictly increasing on [0,x), and singular. For an
explicit counterexample the interested reader is referred to [6].)

For a topological space 7, we will let #(7) denote the Borel
subsets of T; and /() will denote the indicator {unction of the
set §. Let N denote the set of positive integers. Also, recall that
a probability distribution function F: R —[0,1] is said to be
unimodal about y € R if F is convex on ( ~ =, y) and concave on
(y,=), and a probability distribution function F: R —{0.1] is
said to be symmetric if for all realx, F(x) =1 -lim,  , F{~ x = k).
If £ is a positive integer and Y,,- - -, Y, are k random variables
defined on a common probability space, the random vector
Y=[Y,.---.Y, ] induces a probability measure on B(R*). we
will denote this resulting measure, conventionally known as the
distribution of Y, by the notation . Finally, we recall that for
a random variable X and a o-subalgebra 2/, a regular condi-
tional distribution function F: R x ) —[0,1] always exists [7.
pp. 263-264]; such a function is characterized by the following
two conditions: for cach w € (2, F(-,w) is a probability distribu-
tion function, and, for each x€ R, F(x,w)= P(X < x| Nw)
as.

Sherman’s original proposal (generalized and proved in [2])
required a regular conditional distribution function that, when
properly shifted, is symmetric and unimodal about the origin
and a cost function that is nonnegative, even, and nondecreasing
to the right of the origin. For mutually Gaussian random vari-
ables X and Y it follows easily that the resulting regular
conditional distribution function is symmetric and unimodal
about E[X{YKw) for any fixed w. This special case explains
why Sherman's result is often invoked to add a flavor of general-
ity to papers that consider Gaussian distributions. When one
attempts to venture outside this somewhat limited arena, how-
ever, the conditions which Sherman placed on a regular condi-
tional distribution function immediately begin to feel overly
restrictive. The conditions on the cost function, however, arc
extremely nonrestrictive and, in fact, allow for many interesting.
albeit impractical, choices. This imbalance suggests the possibil-
ity of lessening the restrictions on the regular conditional distri-
bution function by perhaps slightly increasing the restrictions

0018-9448 /91 /0500-0691801.00 ©1991 IEEE
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tmposed on the cost function. The following lemma will allow us
to present such a result.

Lemma 1: Assume that F is a symmetric probability distribu-
tion function and that ¢: R = {0, =) is even and convex. Then

[o(x)dF(x)s [O(x-a)dF(x). forallacR.
R R

Proof: Since ® is convex we see that ®(x) < (1/2)P(x — a)
+(1/2)P(x + a). Further, since F is symmetric and ¢ is even,
we sec that

bl O(x +a)dF(x)=f¢>(x - a)dF(x).
F 4 R
Thus, we see that

/;b(x)dF(x)s%fnd)(x-a)dF(x)+%L@(x+a)dF(x)

=[R¢>(x—a)dr(x). w

Lemma 1 will allow a result similar to that given in {1] to be
stated for a much less restrictive family of regular conditional
distribution functions by slightly restricting the family of allow-
able cost functions. In particular, we will be able to drop the
restriction that the conditional distribution function be uni-
modal by requiring that the cost function, in addition to the
previous restrictions, also be convex. Notice that requiring the
cost function to be even and comvex implies that it is also
nondecreasing to the right of the origin.

We are now in a position to state and prove the following
result.

Theorem 2: Let k € N, (QQ, 7, P) be a probability space. and
X.Y,.---,Y, be random variables defined on (), #, P), with X
mtegrable. Let M: R* = R be a Borel measurable function
such that M(Y(w),-- -, Y, ()= E[X]Y,,"-,Y, Kw) as., and let
F: RxQ —{0,1] be a regular conditional distribution function
of X conditioned on o(Y,,---,Y,) such that

F(x+ M(Y(0) (). 0),
as a function of x with o fixed, is symmetsic. Then M mini-
mizes the quantity E[$(X ~ f(Y,,---,Y, ) over all Borel mea-

surable functions f: R* —+ R where &: R —[0,%) is even and
convex.

Proof: Lemma 1 and a change of variables imply that for
each fixed w and for a € R,

f.d’(x - M(Yl(‘")vq v va(w))) dF(:.w)

s[‘b(x —a~M(Y(w), ", Yi(w))) dF(x,w).
R

Let g: R* — R be a Bore! measurable function by which X is to
be estimated and E[®(X - g(Y,,- - -, ¥, )] minimized. Note that

E[&(X-g(Y,..--.V. )]

- E[E[®(X - g(Y,. - Y )le(Ye . Y0].
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From the preceding inequality and [R, p. 79]. the inner expecta-
tion, and thus this expression. is minimized when g(y,. - Y,
= M(Y,, - Y;) -

We will next present a useful corollary to Theorem 2 et
ke N, (11,7, P) be a probability space, X be a rundom vari-
able defined on (§},.7. P), and Y be a random vector defined
on (§), .~ P) taking values in R*. Recall that F(x!Y = y) is said
to be a regular conditional distribution function for X gnen
Y =y if for each fixed y € R*, F(x]Y = y) is a probability di-
tribution function as a function of x, and for cach fixcd
x€ R, F(xiY=y) is a version of the regression funcuon
EUL _, (XY = y] Further. recall that a regular conditional
distribution function for X given Y = y always exists {cf. 9. pp.
372-376]. The next corollary, which follows straightforwardh
from Theorem 2, removes the need 1o work on the underlying
probability space.

Corollary 3: Let k € N, (2, .7, P} be a probability space. X
be an integrable random variable defined on ().~ P). Y bec a
random vector defined on ({),.»", P) taking values in R*. and
M: R* — R be any Borel measurable function equal ae. [u, ] t0
E[X|Y = y]. Further, assume that, as a function of x with
fixed, a regular conditional distribution function of X given
Y =y, denoted by F(x!Y = y), is such that

F(x+M(y)lY=y)
is symmetric. Then g = M minimizes

E[o(X-2(Y))]
over all Borel measurable functions g: R* — R where & R —
[0,=) is even and convex.

111, A Non-GAUSSIAN APPLICATION

The following example illustrates the usefulness of Theorem 2
and Corollary 3 and shows how these results may be applied to
non-Gaussian distributions. In particular, given any real valued
Borel measurable function g(-), we show that there exists a
random variable X and a random variable Y, possessing a joint
density function, so that E[{®(X — A(Y))] is minimized when
h( )= g(-) for any cost function ¢ that is nonnegative. even,
and convex.

Example: Let g: R — R be Borel measurable and define

. )
f(x,y)= gexp(“cxp(lyl)lx ~g(y)+Kl)

1
+ -gexp(-exp(ty*.)‘.x - g(y)— K.

where K is some fixed real number. Note that f{x. v) is a joint
probability density function since

L]Rf(xd’)dxd.\"/“L%C"b(—exp(lyl)lx~g()‘)*k’i)

1
+g e (—exp(iyDix = g(v) - K dxh

1
- ];./;Z exp( —exp(ly)zl)dzd

1
= [ sem(-iyhdy=1.
r2
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Let X and Y be random vaniables such that the pair (X,Y)
has a joint density function given by f(x,y). Notice from the
above calculation that a second marginal density of f{x.y) is
given by f,(y)=41exp(~|y)). Also, notice that f(x + g(y), y),
as a function of x with y fixed, is even. Recall that a version of
E[LX]Y = y] is given by [gxf(x,¥)/fy(y)dx. Fixing this version
and using this expression for f,(y) implies that

E[X|Y=y]
X
= 2exp(i¥) [ Z(exp(—exp(I¥)ix - g(y)+ K))
X8
+exp(—exp(yix—g(¥)— Ki)) dx
= 2exp(v) [ (2 +2(3)- K)
R
+{z+g(y)+K))iexp(—exp(iy)izl)dz

=2exp(IyD(2(g(y))+ K-K) =g(y).

dexp(lyl)

Since f(x, y), as a function of x for y fixed. is even about g(y),
it follows that the conditional density function flx.y)/f,(3)
shares this same property. Thus, it is easy to sec that the
associated regular eonditional distribution function, when prop-
erly shifted, is symmetric (and not unimodal if K * 0).

Corollary 3 may thus be applied to see that A(-) = g(-), which
we recall was an arbitrary Borel measurable function, minimizes
E[®(X ~ R(Y))] over all Borel measurable functions h: R - R
where ®: R —{0,=} is even and convex. Notice that this exam-
ple illustrates the applicability of Theorem 2 in a situation
where Sherman’s result would not apply, and, in addition, it
demonstrates the applicability of these results to non-Gaussian
distributions. Notice further that this example also points out
that the existence of a joint density function in no way guaran-
tees that a regression function will obey any regularity property
other than Borel measurability.

IV. Thue GeneraL Case

The preceding development was concerned with an attempt to
estimate the integrable random variable X based on a Borel
measurable function of the random variables Y}, - -, Y, where k
is 3 positive integer. In this case, our estimale was a
o(Y,,---, Y, >measurable random variable. Noticc that it
straightforwardly follows that o(Y,,- - Y, } is countably gener-
ated since F(R*) is countably generated. In many cases, we
might wish to estimate X by a random variable that is measur-
able with respect to some other o-algebra. For example, con-
sider the case where {Y,: 1 € R*} is a random field and we wish
to estimate X via a random variable that is o({Y,: 1€ R*}-
measurable, Notc that this o-algebra need not be countably
generated. Also, consider the case where H is a real, separable
Hilbert space and Z is an H-valued random variable; here we
might wish to estimate X via a ¢(Z)-measurable random vari-
able. In the general case, Z could be a random object; that is, a
random variable taking values in a measurable space (G, .9),
and we would be interested in estimating X via a random
variable which is measurable with respect to a(Z) = Z " '(.£).

The following theorem addresses the estimation of X via a
random variable which is measurable with respect to any o-sub-
algebra of /.

S

nyl

Thearer. 4: Let (2. .#. P} be a probability space. 2/ be a
o-subalgebra of ./, and X be a random variable defined on
(02,.7.P) such that X s ntegrable. For each we (). et
M(w)= E[ X|% Xw). and assume that there exists a regular
conditional distribution function of X conditioned on /. F.
R x 1 —{0,1], such that F(x + M{w).w). as a function of
with w fixed, is symmetric. Then M minimizes the qusnhty
EL®(X — X)) over all afmeasurable random varishles X, where
@: R —[0,%)is even and convex.

Proof: lemma 1 and a change of variables imply that for
each fixed w and for a € R,

J@(x - M(w))dF(x.0) < [ ®(x - a - M(w)) dF(x.0).
4 R

Let X be an sfmeasurable random variable hy which X i< w
be estimated and E[®( X — X)] minimized. Note that

Elo(Xx- X)) =E[E[o(Xx - X)v/]].

From the preceding inequality and [8, p. 79]. the inner expecta-
tion, and thus the above expression, is minimized when X = A,

—
—

V. ConcLusios

In this correspondence we have considered the problem of
optimal estimation of a random variable X based on an obser-
vation denoted by a random vector Y. We have given a mild
restriction on the regular conditional distribution function of X
given o(Y) that ensures that E[®(X — g(Y )] is minimized for
any cost function ¢ that is nonnegativc. even, and convex.
Further, we have shown that given any real valuced Borel mea-
surable function there exist random variables X and Y. possess-
ing a joint density function, so that the chosen function is an
optimal estimator, with respect to any of the cost functions
previously described, of the random variable X based on the
random variable Y. The results were then extended to extima-
tion of X based upon a random variable that is measurable with
respect to any given o-subalgebra.
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C. Decentralized Estimation

With a reasonable effort one may combire the results in
Appendices A and B to result in methods of fusing best estimates
where the field obscrvers estimate under different fidelity critena.
For example, we presented results of this nature in Appendix C
which appeared in the paper entitled, "Decentralized estimation with
nontraditional fidelity criteria and corrupted estimates,” which
appeared in the Proceedings of the Twenty-Sixth Annual Conference
on Information Sciences and Systems.

In the context of decentralized estimation, there is a need to
efficiently and effectively piocess the estimates provided by
multiple seasors. It is this problem ot how best to fuse the
separate estimates thar is the <.sence of decentralized estimation.
This paper was concerned with decentralized estimates when the
estimates provided by the various sensors were corrupted by noise
during transmission to the central processor and when different
fidelity criteria were used by the different sensors. Decentralized
techniques arise naturally in a number of diverse applications such
as radar tracking, fault tolerance, two-way communications, highly
redundant sensor systems, image processing, impact point
prediction, moving source location, map updating in oceanography or
meteorology, multiple sensor navigation systems, surveillance and
search systems, underwater acoustic telemetry, power systems,
object recognition, and communications between suosystems along
unreliable or limited channels. Decentralized procedures promise
many advantages over their centralized counterparts. For exampie,
they may offer increased system reliability and fault tolerance,
increased immunity and resistance to noise and jamming, increased
accuracy, increased data compression and rate reduction, increased
isolation and recovery capability, a parallel structure "iseful when
processing a large volume of information, increased processing
speed, increased computational efficiency, increased coverage, and
an increase in the overall robustness of the system. In this paper it
is shown, in contrast to previous results, that in a general additive
Gaussian noise setting a decentralized procedure may produce the
same estimate as a centralized procedure without the need for any
intersensor communication.
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Abstract

Decentralized estimation techniques are proposed
based upon models that allow different nontraditional cost
functions to be employed by each sensor and allow for noise

to exist between the sensors and the central processor.

Introduction

In the context of decentralized estimation, there is a
need to efficiently and effectively process the estimates pro-
vided by multiple sensors. Indeed, it is this problem of
how best to combine or fuse the scparate estimates that is
the essence of decentralized estimation. This paper is con-
cerned with decentralized estimation when the estimates
provided by the various s=nsors are corrupted by noise duf«
ing transmission to the central processor and when different

fidelity criteria are used by the different sensors.

Decentralized techniques arise naturally in a number
of diverse applications. For example, decentralized tech-
niques have been proposed in the areas of radar tracking,
fault tolerance, two-way communications, highly redundant
sensor systems, image processing, impact point prediction,
moving source location, map updating in oceanography or
meteorology, multiple sensor navigation systems, surveil-

lance and search systems, underwater acoustic telemetry,
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power systems, object recognition, and communications be-

tween subsystems along unreliable or limited channels.

Decentralized procedures promise many advantages
over their centralized counterparts. For example, decen-
tralized procedures may offer increased system reliability
and fault t-lerance, increased immunity and resistance to
noise and jamming, increased accuracy, increased data com-
pression and rate reduction, increased isolation and recov-
ery capability, a parallel structure useful when processing
a large volume of information, increased processing speed.
increased computational efficiency, increased coverage, and

an increase in the overall robustness of the system.

Although much has been written on the subject of
decentralized estimation and data fusion, many important
questions remain unanswered. Further, when answers have
appeared they have often been incorrect or misleading. For
example, is it true (as intuition might suggest) that & decep-
tralized procedure can produce the same optimal estimate
produced by a centraliced procedure if and only if the sen-
sors are allowed to communicate with each other? o [1]
it is 8atly stated that for a decentralized estimation struc-
ture to be effective the local sensors must communicate
with each other, and in {2] a decentralized pr xcedure has
been proposed based upon additive noise and intersensa

communication that provided the same estimate as a ce

T




tralized procedure. In [3], however, it is shown, in contrast
to the previous results, that in a general additive Gaussian
noise setting a decentralized procedure may produce the
same estimate as a centralized procedure without the need

for any intersensor comrmunication.

Data Fusion

In {3} the problem of deceatralized estimation was
considered in a general setting. In particular, it consid-
ered the problem of estimating a fixed second order ran-
dom variable X defined on a probability space (2, F, P)
via a combination of estimates of the form E{X|Y;] where
l1<i<nand Y, ..., Y, are random variables alsoc de-
fined on (R, F, P). That is, [3] considered the case in
which the central processor was provided by each sensor
with a best mean square estimate of X as a Borel mea-
surable transformation of the observation Y;. Focusing at-
tention on Borel measurable transformations of the data
it follows that the central processor must find a way of
approximating E{X|Y), ..., Y,] based on random vari-
ables from the set {E[X|Y,], ..., E[X|Y4]}. (That is, it
must approximate the orthogonal projection of X onto
L2, o(Yy, ... , Ya), P) using the orthogoual projections
of X onto L2(%, o(Y,), P), ..., La(R, 0(Ya), P).) Thus,
from a theoretical perspective, one seeks conditions under
which E(X|{EX|Y1), ..., E[X|Ya)] may provide a good
spproximation to E[X]Y;, ..., Y,]. Unfortunately, posi-
tive results to this question are elusive in many commion
settings. For example, (as shown in [3]) even if X is a
Gaussian random variable, the observations {Y;, ..., Y}
are mutually Gaussian random variables, and the problem
expands to include estimates from the sensors of the form
E[X | D] where D is a o-algebra generated by any nonempty
proper subset of the observations (that is, the problem
expands to allow estimates from the sensors of the form
EX|Yj, ..., Y;] for k < n), it still might not be pos-
sible to provide a reasonable estimate for X based on the
data from the sensors. Thus, even invoking the ubiquitous
Gaussian assumption and allowing any proper subset of the

sensors to communicate may not be enough to establish rea-
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sonable rules for data fusion in such a general setting. In
the next section we extend this example to include many

non-Gaussian distributions.

A Counterexample

As in 4}, Jet n > 2 be an integer and consider yan-
dom variables {X;, ..., X,} that have a joint probability

density function f : R® — R of the form

f(x1, ..., %) = Lﬁf(x;)} {1 +Hx,f(x;)] 'x, €R
j=1

=]

where f:R ~+ R is a standard Gaussian density function.
It follows that the random vanables in {X;, ..., X,} each
possess a standard Gaussian distribution. Further, it fol-
lows that, whereas the random varniables in {X;, ... . X;]}
are not mutually independent, the random variables in any

proper subset of {X;, ..., X,} are mutually independent.

Next, as in 5], consider a density function g for which
the function g : R® — R defined by

g(y1, ... ¥a) = [Hé(:ﬂ)} [1 +[Iw é(ys)] iwER

i=1

is nonnegative and integrates to 1. Let n > 2 be an integer.
¥ {Y,,...,Y,} are random variables with a joint density
function given by g then, paralleling the work in [4]. it fol-
lows that each random variablein {Y;, ..., Y, } possesses a
density given by g, and further that, although the random
variables in {Y1, ..., Yo} are not mutually independent,
the random variables in any proper subset of {Y;, ..., Y5}
are mutually independent. Note that g(y;, ..., ya) is non-
negative and integrates to 1 if x g(x)} < 1 for al} x € R and
if fpxg*(x)dx=0.

Now, let f be any probability density function such that
Ixf(x)| < 1forall x € R and such that [ xf(x)dx = 0, let
n > 1 be an integer, and let {X,Y,, ..., Ya} be random

variables possessing a joint density function { : R**! - R

of the form
f(xu Yiy oo Yn) =
[f(x) Hf(y.)} [l + xf(x) H)’i f(y;)} i x, ¥ € R
i=] =]

2

3
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Since the conditional expectation of X given any proper
subset of {Yq, ..., Ya} is almost surely zero, it follows that
any attempt to estimate X via best Borel measurable trans-
formations of random variables from proper subsets of the

data is hopeless.

Non-Mean-Square Cost Functions

Now we direct our attention toward non-mean-square
cost functions. Given two random variables X and Y
defined on a common probability space, a frequently en-
countered problem in estimation theory involves finding a
function g:R—R that minimizes E{@(X ~ g(Y))] for some
cost function $:R — [0, 00). Generally, one is coafronted
with two concerns in choosing an appropriate cost fuac-
tion. First, one is concerned that the cost function shculd
adequately reflect the cost one wishes to aswnciate with an
error, and second, one is concerned that the cost function
should result in a problem that is mathematically tractable.
Traditional cost functions, such as the popular mean-square
error cost function, are usually chosen solely on the basis
of the second of the above two concerns. As a result, the
fidelity demands of the specific problem under considera-
tion are rarely relied upon, and, in fact, are often not even
considered when determining the cost function that will be

used.

This sacrifice of suitability for mathematical ease in the
choice of a cost function should be the cause of some con-
cern since the traditional choices are unsuitable for many
problems in estimation. As an example, consider the prob-
lem of estimating the position of a projectile. If one is in-
terested in shooting down the projectile then a small e:ror
in the estimate of its position may not result in a penalty.
If, however, the error in the estimate is such that the pro-
jectile is miss»d then the penalty might suddenly become
enormous. Further, this penalty should not increase if the
error in the estimate becomes even larger since the result
of any two such errors is the same. The mean-square error
cost function applied to this situation penalizes small incon-
sequential errors, assigns almost identical costs to barely
hitting and barely missing the target, and assigns a larger
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cost to a far-rmiss than to a near-miss even though the re-
sult in each case is the same. Clearly, the mean-square
cost function is not a very good choice in this commonly
encountered situation. Such an example demonstrates the
great need to extend the domain of mathematical tractabil-
ity to include many cost functions that, though pertinent
to the subjective demands of many problems, have often

been excluded from consideration.

In {6], general conditions were given allowing for simul
taneous use of any cost function that is nonnegative, even.
and nondecreasing on [0, o0) or any cost function that is
nonnegative, even, and convex. Further, these results were
applied to non-Gaussian situations and extended to cover
estimation based on random variables measurable with re-
spect to a o-algebra generated by a random object. In the
next section we apply these results to the area of decentral-

ized estimation.

Non-Mean-Square Fusion

Recall that a probability distribution function F is
symmetric if for all real x, F(x) = 1 — limp F{—x - h).
The following result follows directly from Theorem 1 in {3]
and Theorem 2 jn (6].

Consider a probability space {, F, P)
.+ N, defined on (1, 7, P)

where n is a positive integer and X is a second order ran-

Theorem 1:

and random variables X, N;, ..

dom variable. Further, assume that for each positive inte-
ger i < n, N; has a zero-mean Gaussian distribution with
positive variance given by ¢?, and that X, Nj, ..., Ny are
mutually independent. Let Yi = X + N, fori=1,...,n
and assume that a regular conditional distribution func-
tion F:R x  — [0, 1] of X conditioned on o(Y;) exists
such that F(x + E{X|Y;}{w), w), as a function of x with
w fixed, is symmetric. For each positive integer i < n.
let $:R — [0, o0) be even and convex. For each posi-
tive integer i < n, there exists a Borel measurable fuaction
bi:R — R that minimizes E{&;(X — h(Y;))] over all Borel

measurable functions h. Further, there exists a Borel mea-

l
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surable function g:R® — R such that E[X|Y,, ... . Y,] =
S(hl(yl)! sy h‘(\rn)) a.s.

Fusion with Inter-Sensor Noise
The following example was shown in [3].

Example: Assume that all of the random variables in this
example are defined on the same probability space denoted
by (R, F, P). For each positive integer 1 £ n, let N; be
a zero-mean Gaussian distribution with positive variance
given by o2, let X be 2 random variable such that P(X =

= P(X = —-1) = 1, assume that X, N,, ..., N, are
mutually independent, and let Y; = X+ N;. It follows from
(3] that a version of E[X |Y; = y] is given by tanh (g? y)
and that

a
EX|Y,,..., Y] = tanh (Z ta.nh'l(E[XIYi])) a.s.
i=1
To begin, in the context of the previous example, note
that E[X| Y;] possesses a density function ¢;:R — R of the

form

a(t) =3 i’ztz di(e? tanh ™ (t)); Jt| < 1

where

4Gl = 2«::/27 [exp ("(l%v,’li) e (—92;"21_):” ‘

Alsa, note that [tanh(x;) ~ tanh(x2)} < |x; — x2] for all
x;,x2 € R and, for 0 < a < 1, that |tanh™}(x,) -
taph ™ (x,)] < 1hyIx; — x5! for all x;, x; € [~a, a).

y Zy defined on
the same probability space as above such that, for each pos-

Consider now random variables Z,, ...

itive integer i < n, Z; is Gaussian with zero mean and pos-
1twevana.nces and such that X, Ny, ... ,Ng, Zy, ..., Za
“are mutually independent. Let a be an element from
(Q, 1). Further, for each positive integer i < n, let 5 be
8 positive pumber, let W; = SE[X|Yi] + Z;, let A; =
weQ:- -):lW-,l < a}l,and let V, = %:W-, I, Let

= {w € @ : |[E[X|Y;]] £ a} for each positive integer
i € n and note that P(Af) and P(C{) may be made arbi-
trarily small by choice of a and 5. Next, note that for each
fixed positive integer i < n, it follows that forw € Ci N A;
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we have

tanh(z-: tanh~}(E{X IY,})) - tanh (i tanh ™} (V, )) %

im] =1

< z:m*(z(x;\n]) - th*’(\ )r

jusl =]

< 3 jtanh~H(E[X | Y.]) - tanh (V)]

=1

<3 ,Z [EX|Yi] - Vil}

=l

=1-1a2 [i: %_l)}

=)

Next, note that, for any positive integer i < n and any

positive number € < 1,

(3riz0) 2

Thus, given any positive p < 1 and any positive ¢ < 1, the
upper bound above may be made less than ¢ with proba-
bility p by choice of ca and 5 fori=1,...,n

Finally, for r > 1, note from above that

EUzmh(f‘_ tanh~*(E[X m])) -

i=]

tanh (Zn: tanh~}(V; ))

i=}

< (=¥ (S (9)]
< (=) (ZE(3)])

Also, note that

B”mh(f: tanh~!(E[X IYJ)) —.

i=]

T
IC,M,]

IC:UA:]

tanh (i tanh™? (Vi ))

il
< 2"P(Cf UAT).
Thus, it follows that the rth mean of the error between our
estimate and a best Borel measurable mean square estimate
of X without inter-sensory noise may be made arbitrarily
small by choiceof ¢ and 8 fori=1,...,n
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D. Multidimensional Quantization

Results on multidimensional quantization are presented in the
paper entitled, "A result on multidimensional quantization,” which
will appear in Proceedings of the American Mathematical Society
and is given in Appendix D. Multidimensional quantization often
arises in an effort to use digital processing techniques on data,
since a quantizer is literally at the heart of analog to digital
conversion. In this appendix we show that a popularly used
technique for designing multidimensional quantizers fails
spectacularly.
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(Communicated by George C. Papanicolaou)

AssTRAcT. For any integer N > 1, a probability space, a Gaussian random
vector X defined on the space with a positive definite covariance matrix, and
an N-level quantizer Q are presented such that the random vector Q(X) takes
on each of the N values in its range with equal probability and such that X
and Q(X) are independent.

INTRODUCTION

Quantization, the process by which a set is mapped into a finite subset of a
given cardinality, plays a pivotal role in virtually any application that requires
analog to digital conversion; indeed, it is at the heart of much of modern digital .
technology. In such apphcanons, a quantizer is often taken to be a function
mapping R* into a subset of R¥ of cardinality N, where k is a positive .
integer and N is an inicger greater than one (see, ¢.g, (1, S, 3, 6, 2,(8) cE, In a
this paper we present what might be a surprising consequence of Such a genera
approach to quantization.

DEVELOPMENT

For a topological space T, we will let & (T) denote the family of Borel
subsets of T'. For a set .S, we will let P(S) denote the power set of S and /s
denote the indicator function of . By a standard Gaussian measure we will
mean a Gavssian measure whose first moment is zero and whose second mo-
ment is one. Let k be a positive integer. For any measure m on (R¥, Z(R¥)), __ — insert \e"} <
we will let m, denote the inner measure on(R¥, P(R*)) induced by m and patanthe s
we will let m* denote the outer measure on (R*, P(RX)) induced by m. Re- a5 Show
call from [4, p. 61] that if B ¢ Z(R*) and A4 € P(R¥), then m.(B nA)+
m*(Bn A°) = m(B). We will let A denote Lebesgue measure on (R, Z(R))
and, for integers k > 1 we will let A denote Lebesgue measure on (R“"Q(R* 05 IV”“‘\
where k will be determmed from the context. Recall that for a measure space
(R%, Z(Rk), m), asubset S of R* issaid to be a saturated non-m-measurable
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set if Mm.(S) = m.(S°) = 0. Finally, a k-dimensional quantizer of a ran-
dom variable X defined on a probability space (2, ¥, P} is any function
/ Q: R* . F such that F is a finite subset of R¥, such that Q(x) = x for all
x in F (i.e., such that Q restricted to F is the identity map on F) and such
that Q(X) is itself a random variable defined on (2, ¥, P). If F is a finite
subset of R* with cardinality N then a quantizer Q: R* — F of a random
variable X is said to be an N-level quantizer.

The following lemma is proved in [§] pp. 381-382].

Lemma 1. For any positive integer M there exist M disjoint subsets Z, , Z, GJ‘ ees

) ) ) . omik dhis

The next result is an immediate cons€quence of Lemma 1.  phfase
Corollary 1. For any integer N > 1 there exist N subsets Ty, Tz, ..., Tw of
the real line that partition the real line and are such that for each positive integer
J < N, Tj is a saturated non-A-measurable set.

For our purposes the following corollary will prove useful.

Corollary 2. For any positive integer k and any integer N > 1, there exist N
subsets S1,S2,..., Sy of RX that partition R* and are such that, for each
e positive integer j < N, S; is a saturated non-A-measurable set.
atcied Proof. For k =1, the result follows from Corollary 1. / sume k > 1. Let
Wwiose & Ti, ..., Tn bea partition of the real line as given by Cor« .;ary 1. For positive
gl it integers j < N, let S;=T; xR x .- x R C R¥. Fix a positive integer j < N
Wik and assume that there exists{(a set B € & (R*))such that B C S; and A(B) > 0.

Zys of the real line such that Zy, Z,, ..., and SUCHIR@d Z = ZyU---0 2y <
are saturated non-A-measurable sets. @;@ & @ / =

omk Caircled
ease ong NK‘“‘Q
{F with Hae Fallowing

ﬁln 3’0‘ Subse’r\‘z i

Define a subset B of R as follows: t
B={byeR: (b, bs, ..., by) € Bforsome (b, ..., by) € R“~'}.

Recall from [7, p. 161])that B € &(R). Further, notice that i(B) > 0 since
BCBxRx---xRCR: and A(B) > 0. But, A(B) =0 since B c T}
and A.(Tj) = 0. This contradiction implies that A(B) = 0 and hence that
A.(Sj) = 0. It follows similarly that A.(S$) =0 also. Q.E.D.

Lemma 2. For a positive integer k and an integer N> 1,let S, 8:2,...,Swn
comprise a partition of R® such that for each positive inzeger% N, Sjisa

Notre

saturated non-A-measurable set. The set
F={(SinA)U---U(SyNnAxN): 4, € B(R*) for | <i < N}

is a g-algebra on Rk,

Proof. Choosing A4; = -.- = Ay = @ implies that @ € & . Let A be an

elementof & . Then A = (S} NA)U---U(Syn Ay) for some choice of the

A;’s from Z(R*¥). Further, 4° = (S;NA4,)°N---N(SyNAx)C. Since

N
Sf = U Sy,
f=1 (i)
it follows that !
N N
A=) U sju4.
Im1 ol (igt))

Inceck oxdva
Space hece

@
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Hence A€ is a finite union of sets, each of which is of one of the following
thoee forms: - . -
() Snn-- nS,.,nB where 1 <my<---<ng<N, k>1,and Be F(R¥;
(i) S;jnB for 1 < j< N and BEQ(R");
(id) B € Z(RX).

«4— Every set of the form given by (i) is empty since the S; s are disjoint. Further, DQ NQT
any set B € F(Rk) may be expressed as B = (S;nB)U---U(SyNB). Hence, | TNDENT
A° is an element of & . ‘

Finally,"if B, Bz, ... are in ¥, then for some choice of the 4;, ;'s from
FRY), e

Uﬂj Uﬂ(SjﬂA; j)~ﬂS;ﬂ UA;/)E)H‘;
: I=1 i=] f=1 o
(Qep.

Recall that two measures P, and P; on a given measurable space (Q, &)
are said to be equivalent if {4 €& : P(4) =0} = {4 € & : A(4) = 0}. Notice
that for sets S, 52, ..., Sy as above, it follows that, for any positive integer
i < N and any & (R*)-measurable set H, P(SinH) =0, P(SfNH) =0,
P*(SiNH) = P(H), and P*(Sf nH) = P(H) for any probability measure P
on (Rk, #(Rk)) thatis equivalent to Lebesgue measure on (R*, F(R¥)). The
following lemma will be used in the proof of a subsequent theorem.

Lemma 3. For a positive integer k and an integer N > 1, let Sl 82, ..., SN

comprise a partition of R* such that for each positive integer j < N, S is a sat- -
urare@—measurab[e set. Let P be a probability measure on (R¥, Z(R¥)) MO
that is equivalent to Lebesgue measure on (R*, @(R*)). Let A, ..., Ax and

By, ..., By be sets from B(RX) such that

(S; NADU---U(SyNAN) = (S nB)U---U(Sy N Bw).

Then P(A;AB;) =0 for any positive integer i < N where for any two subsets
A and B of Rk, AAB denotes the symmetric difference of A and B.

Proof. Fix a positive integer i < N. By assumption,
(SiNnADU---U(SKNAN) =(S;NB))U---U(SyNBy).

Intersecting each side with S; implies that (S;NA4;) = (S: N B;);, which implies
that (Sin4)N(SINB) = (SinA)N(S{UBE) =(SinAinS{)U(SiNA4;NBf) =
(Sin 4in Bf) = @ and, similarly, that (S: N B; N 4f) = @. Thus, we see that
(SinAinBYU(SiNB;NAS) =Sin(A4iAB)=a. Since (4iABy) € F(RK), it
follows that P(4:AB) = P*(SiN(A4ibB;)) = P*(8)=0. QE.D.

The following theorem provides a probability space upon which the principal
result of this paper will be based.

Theorem 1. For a positive integer k and an integer N> 1,let $, S$2, ..., Sn
comprise a partition of R* such that for each positive integer j < N, S; is a sat-
urated non-A-measurable set. Let P be a probability measure on (R*, F(R*))
that is equivalent to Lebesgue measure on (R*, F(RX)), There exists a prob-
ability space (R¥, &, u) such that & includes B (R¥), such that & contains
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Sy, ..., SN, such that the measure u agrees with P on &B(R*), and such that
Z(RX) is independent of a(Sy, ..., SN).

Proof. Let & be the g-algebra & provided by Lemma 2. Recall that &

contains all sets of the form (Sy NA|)U---U(Ss N A4s) where 4; € F(R¥) for
each positive integer i < N.{if }4 € Z(R*) then choosing Ay =--- = Ay = A @

implies that 4 € ¥. Similarly, for any positive nteger i < NV, setting A; = R¥
and all other A;’s equal to the empty set implies that S; € & . Define a measure
4 on the measurable space (R¥, &) via

S 0 U U (S AN) = 5 (PLd) + -+ PAN)

for (SynA4)U---U(SyNAN) € &. That y is well defined follows from Lemma

3 and that u is in fact a probability measure that agrees with P on F(RX) is —
then straightforward. Further notice that u(S;) = /,'{ for each positive integer 6{,@:&\/
i < N and that, for any set B € #(R*) and any positive integer i < N, —
#(SiN B) = {P(B) = u(Si)u(B) . Thus S; is independent of Z(R¥) for each

positive integer i < N. Finally, notice that & (R*) is in fact independent of

a(St, ..., Sn) since {&, 8;,..., Sy} is a x-system. Q.E.D.

We are now in a position to state and prove the principal result of this paper.

Theorem 2. Let k be a positive integer and let N be an integer greater than
one. There exists a probability space (0, %, v), a Gaussian random vector
X defmed on (Q, S, v) taking values in R* with a positive defnite covari-
ance matrix, and an N-level k-dimensional quantizer Q: R¥ — F such that
v(Q(X) = x) =1/N for each x in F and such that X and Q(X) are inde-
pendent.

Proof. Let Sy, ..., Sy besets as provided by Corollary 2. For these & subsets
of R¥, let (Q, .5, v) be a probability space as provided by Theorem 1 where
P is chosen to be the product measure induced by placing standard Gaussian
measure on each factor of (R¥, #(R*)). For each positive integer i < N,
let o; be an element from S;. Let F denote the set {a;,..., anx}. Define
an N-level k-dimensional quantizer Q: R* — F via Q(x) = 27, ails,(x).
Further, notice that the random vector X(w) = w; @ € Q, is a zero mean
Gaussian random vector defined on (Q, &, v) whose covariance matrix is the
k x k identity matrix. Also, notice thatfor 1 <i < N, v(Q(X(w)) = as) =
v(iw € Si) = 1/N. Finally, notice that X and Q(X) are independent via
Theorem 1. QE.D.
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replaced by a lowercase j.
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E. Multidimensional Convolution

Results on multidimensional convolution are presented in the
paper entitled "Some Aspects of Multidimensional Convolution”
which appeared in Proceedings of the 1991 IEEE Intcrnational
Conference on Acoustics, Speech, and Signal Processing and is
given in Appendix E. It is shown that multidimensional convolution
need not be associative . Further, for any positive integer k , it is
shown that the multidimensional convolution of two real valued,

bounded integrable nowhere zero functions defined on RK can be
identically equal to zero. These results are discusses in an
algebraic setting, and a consequence involving random fields is
briefly discussed.




SOME ASPECTS OF MULTIDIMENSIONAL CONVOLUTION

Eric B. Hall
Department of Electrical Engineering
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Dallas, Texas 75275

Abstract

It is shown that multidimensional convolution need not
be associative. Further, for any positive integer k, it is shown
that the multidimensional convolution of two real valued,
bounded, integrable, nowhere zero functions defined on RK
can be identically equal to zero. These results are discussed in
an algebraic serting, and a consequence involving random
fields is briefly considered.

Introduction

Real valued functions of several variables frequently
occur in such areas of signal processing as image processing,
optics, and oceanography. In these areas, as well as in many
others, convolution plays a major role. This paper treats
several aspects of multidimensional convolution which should
be of interest to the signal processing community.

In applications, multidimensional convolution often
arises when considering multidimensional linear systems, In
this context, the linear system is characterizes via convolution
with an integrable function g and the input to the linear system
is denoted by an integrable function f. The function h given by
f convolved with g then denotes the resulting output. A
problem which frequently arises in system identification is that
of deconvolution which is concerned with approximating or
identifying the function g from a knowledge of the pair of
functions f and h.

In [1] it was shown that in a one-dimensional serting
there exist integrable, bounded, nowhere zero functions f and
g such that f convolved with g is identically equal to zero. That
1s, in the context of linear systems, there exists a linear system
described via convolution with a fixed, bounded, nowhere
zevo function g which may be a nopass filter to an input which
is nowhere zero. Clearly, such a phenomenon should be a

Gary L. Wise
Department of Electrical and Computer Engineering
and
Departnent of Mathematics
The University of Texas at Austin
Austin, Texas 78712

cause of some concern to one who is artempting to derive a
general method of deconvolution. In this paper, we extend this
resuit to the case of multidimensional convolution.

Development

Let k be a positive integer. For a set S ¢ R, we will let
Ig denote the indicator function of the set S. We will denote
by L{(RK) the set of all extended real valued Lebesgue
integrable functions modulo almost everywhere equivalence
defined on RK equipped with the norm given by the integral of
the absolute value of an element of Ll(Rk). By a k-sequence
of real numbers we will mean any function mapping ZK into R
where Z denotes the integers, and we will denote the value of
such a function o at the point x via @x. A k-sequence will be
called absolutely summable if it is integrable with respect to
counting measure on the power set of ZK. Further, we will
occasionally denote points x in Rkasx = (X1, %2, . . - Xg)
where the x;'s are real numbers. Finally, for two points x and

y in RK we will denote the Euclidean inner product via
k

oy = 2 X; ¥;j-
i=1
Recall that the convolution of two functions f and g in
L(RK), denoted by f » g, is defined via

(f*g)x) = j f(x - y) g(y) dy
rk
provided that this integral exists for all x € RK. Further, we
recall [2, pp. 247-248] thatif fand g are in Ly(RK) thenfe g
is also in Ly (RK) and satisfies Iif » glh,, < fiy, lighy .
The following lemma shows that multidimensional
convolution need not be associative.

Presented at the 1991 IEEE International Conference on Acoustics, Speech, and Signal Processing,
May 15'-17, 1991 10 be published in the Proceedings of the Conference.




Lemma 1: Let k be a positive integer. There exist three
bounded real valued Lebesgue measurable functions f, g, and
h defined on RK such that, even though the convolutions are
each defined, f» (g # h) » (f # g) » h, i.c. such that
convolution is not associative.

Proof: Consider first the special case whenk = 1. Asin

[3, p. 1771, for t and x real, define

p(1) = (1 - cos(v)) I, 2K](t) and let f(x) = 1, g(x) = p’(x), and
X

hix) = I p{t) dr. Note that (f * g)(x) = jf(x -9 dt
R

—t>

= Jp'(t) dt = p(2x) - p(0) = 0. Further, (g * h)(x)
R

t
= Ig(x ~t)h(t)dt= I px-1) J p(s) ds dt = (p * p)(x) via
R R o
integration by parts. Note that
2n
(p*p)x)= J‘ (1 - cos{x ~y)j (1 - cos(y)) IIx - 2r, x)(¥) dy.
0

Hence, (g » h)(x) is positive on (0, 47) and zero elsewhere.
Finally, even though (f« g)« h=0, wesec thatfs (g+ h)isa
positive constant.

Now, let k be an integer greater than 1. Withf, g, and h
defined as in the preceding paragraph, let f, §, and h map Rk
into R via f(x) = 1, E(x) = g(x1) 8(x2) . . . g(xx). and h(x) =
h(x7) h(x2) . .. h(xy). It follows immediately that (f * g) = 0
and (g * h) is positive on (0, 4m)K and zero elsewhere. Hence,
(f+ g « h=0but T+ (§ * h) is a positive constant.

Q.E.D.

Next, consider two bounded, real valued, Lebesgue
integrable functions f and g defined on RK, Further, assume
that f and g are nowhere zero. Does it follow that f » g is
nowhere zero? Does it follow that f # g is nonzero on some
nonempty set? From a linear systems viewpoint, does a
nowhere zero input to a linear time-invariant system described
via convolution with a fixed nowhere zero function result in an
output which is nonzero somewhere?

To begin, we will need the following notation. For an
absolutely summable k-sequence of real numbers a, define a
boundzd linear operator on L I(Rk) 10 Ll(Rk) via

(Tp(D)x) = J Oy f(x — y) dC(y).
2k

where C denotes counting measure on the power set of ZX, for
any element f from L} (RK). For any rwo absolutely
summable k-sequences of real numbers & and P, it follows
that

((Tg o TR) )x) = Tg Ikay f(x - y) 4C¥))
z

=I j%ﬁyf(x—y—z)dccy)dcm
Zk Zk

= J Ay f(x - y) dC(y)
2k
where we define

hy = j J o Bq gy(P. @) dC(p) dCla).
ZkzZk

where gy(p. @) equals one if p +q =y and equals zero
otherwise. Finally, note that for any two elements f and g
from L (RK) it follows via Fubini’s theorem that

(T(D) « (Tp(e)) = (Te o TR = g).

Theorem 1: Letting the above set notation, there exist two
non-identically zero absolutely summable k-sequences of real
numbers o and B such that for any f and g from L1 (RK),
(Ta(D) * (Ta(e) = 0.

Proof: Recall that the function kcos(x) cos(x2) - - - cos(xy)!
is expressible as a multiple Fourier series given by

J ey expi Gy ac)

7k
where it follows easily that cy = ay; 2y, .. . 8yy where ap, = 0
if n is odd and .
_2]enn2
n R{1-n2

if n is even. Further, if we define

fi(x) = 12~ (Icos(x1) cos(x) -+ - cos(xi)l +
(cos(x}) cos(x2) - - - cos(xg))) and

fa(x) = % (lcos(x1) cos(x2) - - - cos(xk)i —

{cos(x1) cos(x3) - - - cos(xk))), then f)(x) fa(x) = 0,

fix) = Iay exp(i {x, ¥)) dC(y).
YA

and




fa(x) = I By expui (x, ¥)) dC(y)
zk

where
C
H— ifye (-1,1)k

|

(;})" ifye [-1,1)k

[o
’~2¥ ifye (-1, 1}k

ch \~(§)k ifye (-1, 1K

But, f](x) f2(x) = 0

-« J oy exsticx n acon [ By expti .y acen
zk Zk

= I _f ay B, expli (x, y) + {x, 2))) dC(y) dC(2)
Zk Zk

= J ly exp(i {x, y}) dC(y) where, as before,
Zk

Ay= J f oy Bq gy(p: 9) dC(p) dC(q)
zk Zk

and gy(p, @) equals one if p + q = y and equals zero other-
wise. Note thai, via Fubini’s theorem, Xy =0 forevery y.
Thus, it follows that (T (f)) * (T, B(g)) =(Tyo TB) f*+g)=0
for any integrable f and g.

Scholium 1: Let k be a positive integer. There exist two real
valued, bounded, nowhere zero, Lebesgue integrable
functions defined on RX such that their convolution is
identically equal to zero.

Proof: In the proof of Theorem 1, choose f(x) = g(x) =
15(x) where S = (-1, 1}k,

Before commenting further upon this result, we shall
detour for a moment 10 review a few algebraic concepts.
Recall that a nonempty set G and two ope.ations + and « form
an associative ring, hereafter referred to as a ring, if G is an
Abelian group with respect to the + operation (denoting the
identity element by 0 and (a)~! by —a), G is closed and
associative with respect to -, and finally if, for any a, b,and ¢
inG,a-(b+c)=a-b+a-cand(b+c)ra=b-a+c-a.

Q.E.D.

Q.E.D,

Further, if there exists an element v in G such thata-u = u-
2 = a for cvery a in G, then G is said 10 possess a unit element.
Also,ifa-b=Db-aforevery aand b in G then G is said 10 be
a commutative ring. Recall that for a commutative ring G an
element a # 0 in G is said to be a zero-divisor if there exists an
element b# 0in G such that a - b = 0, Further, recall that a
commutative ring is said to be an integral domain if it
possesses no zero-divisors. For a more complete discussion
of rings, the interested reader is referred to {4].

It follows easily that Ll(Rk) equipped with the
operations of pointwise addition and convolution is a
commutative ring & ; in fact, R is a commutative Banach
algebra. Even though it can be seen that this ring possesses no
unit element {2, p. 248}, it does possess so-called
“approximate units” which ofien serve just as well for many
purposes.

The previous results can now be viewed in a different
setting. Recall that Lemma 1 showed that multidimensional
convolution need not be associative. Although this result may
seem surprising to some, notice that the function f given in the
proof of Lernma | is not an element of . Further, from an
algebraic standpoint, the perhaps disturbing result of Scholium
1 yields the following corollary as a direct consequence.

Corollary 1: Let k be a positive integer. The commutative
ring given by L1(RK) equipped with the operations of
pointwise addition and convolution is not an integral domain.

Hence, Corollary 1 implies that (f * g) = 0 can occur
even when neither f nor g is equal to zero. In fact, we have
actually shown something stronger via Scholiumn 1 since
it exhibits bounded integrable functions f and g defined on RK
which are nowhere equal to zero and yet for which (f « g) is
identcally equal to zero.

Finally, again let k be a positve integer. It follows from
Theorem 1 and Scholium 1 that there exists a random field
{X(p): p € RK) with integrable sample paths and a function
f:RK—R which is Lebesgue integrable and nowhere zero
such that f » X is identically zero. Such a result should be of
interest to those in areas such as seismology, radio astronomy,
underwater acoustics, and channel equalization where blind
deconvolution techniques are frequently employed.




Conclusion

In this paper we have considered multidimensional
convolution from an algebraic standpoint and presented a
result which may be of interest to the engineering community.
In particular, we showed that, for any positive integer k, the
convolution of two nowhere zero, bounded, integrable, real
valued functions defined on RK may be everywhere zero.
This result should be of interest to those attempting to identify
the input to a linear time-invariant system via some operations
on the output, such as in deconvolution problems.
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F. The Concept of Finite Memory of a Stochastic Process or of a
Random Field.

Results on the concept of finite memory of a stochastic process
or of a random field are presented in the paper entitled "A comment
on finite memory of stochastic processes” which appeared in the
September 1992 issue of the IEEE Transactions on Signal
Processing and is given in Appendix F. It is shown that a recently
proposed concept of finite memory for a zero mean strictly
stationary stochastic process results in a stochastic of random
variables each of which is almost surely equal to zero. We eagerly
note that the earlier work about which this paper comments was
work supported by the Office of Naval Research.
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ABSTRACT

It is shown that a recently proposed concept of finite memory for a zero mean strictly
stationary stochastic process results in a stochastic process of random variables each of
which is almost surely equal to zero.

DEVELOPMENT

Let k be a positive integer and let {X(t): t € R} be a zero mean, strictly stationary
stochastic process defined on some probability space and taking values in RK. In {1] such
a stochastic process is said to have finite memory if there exists a positive real number D
such that for any positive integer n and for any n times ty, 5, . . . , t,;, the two sets of
random variables {X(t), X(t), ..., X(t,)} and {X(t] +d), X(t5 +d), ..., X(t, + d))
are statistically independent for any real number d such that d > D. Here we note that such
a stochastic process is degenerate in the sense that any random variable in the stochastic
process is almost surely equal to zero.




First, consider the situation of a finite memory, zero mean, strictly stationary stochastic
process as above. Let 6 denote the origin of RK; letn = 2; let ty=-2D;andletty =0. In

this case note that the set of random variables { X(-2D) and X(0}} and the set of random
variables {X(—2D + d) and X(d)} must be statistically independent for any d > D. If we
choose d = 2D, then we see that X(0) must be independent from itself, and hence, since

E[X(0)]} = 0, we see that X(0) = 6 a.s. Now, since the stochastic process is strictly

stationary, it follows that for any real number t, X(t) = 0 a.s. Hence, for each real number
t, each component of the random vector X(t) is almost surely zero.
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G. Distribution of the Determinant of a Random Matrix

Results on the distribution of the determinant of a random matrix
are presented in the paper entitled "A note on the distribution of the
determinant of a random matrix" which appeared in the February
1991 issue of Statistics and Probability Letters and is given in
Appendix G. An analysis of the tail behavior of a probability density
function of the determinant of a random matrix is presented, and an
oversight in an earlier paper on this subject is noted.
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Abstract: An analysis of a probability density function of the determinant of a random mainy i presented. and an oserught in en

earhier paper on this subject is noted.

Kevwords: Determent, random matnix.

Let A,. A,. A,. and A4, denote four mutually
independent identically distributed random varia-
bles defined on the same probability space and
uniformly distnibuted over {0. 1]. Denote by M the
following matrix:

M= {A' A’].

Ay A,

In Williamson and Downs (1988), a graph was
presented for a probability density function (pdf)
for the determinant of M. In this paper we show
that this graph provides a misleading representa-
tion for such a pdf.

It follows straightforwardly that the random
variable 4, A, has a pdf given by ~x,,,(x) log(x)
(all loganthms in our paper are Naperian loga-
rithms). Let X and Y be independent random
variables defined on a common probability space.

each having pdf -—x,,,,(x)log(x). Further, let
W = X — Y. Notice that the distribution of W is

This research was partially supported by the Office of Naval
Research under Grani No. N00014.90-3-1712.

the same as the distnibution of the determinant of

M. Also. notice that there exists a pdi for W

which is even and which is supported on [~ 1. 1]
For x & (0. 1) we have that a pdf of H" at v, san
plx), is given by

1-1
p(x)=/ log{w + x ) logiw) dw

0

Using integration by parts. we get

-1 W W
P(X)=f(} [“fo‘(w*_x ) log( u )]dw.
Now. upon simplification we get

p(x)=1{1-x)[2-log(l - x)}

1-clog(w)
U+ X

+ x log({x) + .xf dw .

0
For a fixed posittve number a. let h:(0. 1) - R
via

h{w) = log(w) log(l + w/a)

0 log{l —1)
+f —--,——~d1_

R
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Note that A'(w1=log(w)/(w + a). Thus we see

that

———dw= —log(l - x) log(x}

W+ x

fl —x log( w)
0

.

+[O log(l—-l)dz

F-1,x {

and therefore we get that
pl)=11-x){2 - log(l - x)]
+xlog(x)—xlog{l—-x)" .

S tog(l - 1)
\‘/;~1,/x : ¢

It follows straightforwa: uiy that

_ ~log(1- 1) N log{x) N log( x)

STATISTICS & PROBABILITY LETTERS

pix)= T 0 =x) p_——
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and hence we see that p”(x) > 0. Thus, we note
that, restricted to (0, 1), p(-)is convex. This shows
that the graph given in Fig. 1 of Williamson and
Downs (1988) is misleading as a representation for
a  Jf of the determinant of M. and it points out
a- mportant, yet often unheeded. caveat associ-
atea with truncation effects in numerical schemes.
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H. Stationary Random Processes

Results on stationary random processes are presented in the
paper entitied "A Cautionary Aspect of Stationary Random
Processes” which appeared in the Novemper 1991 issue of /EEE
Transactions on Circuits and Systemsand is given in Appendix H. A
problem associated with determining the stationarity of a random
process from discrete time samples is noted. In particular, a
nonstationary Gaussian random process {X(t): t € R}is given such
that for any positive real number A, the discrete time random
process {X(nA): n e Z} is strictly stationary, where Z denotes the set
of all integers.
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A Cautionary Aspect of Stationary Random
Processes

Gary L. Wise

Abstract —A problem associated with determining the stationarity of a
random process from discrete time samples is noted.

DEVELOPMENT

Let {X(t). t€ R} be some random process. Let A be a
positive real number, and consider the random process {X(na):
n € Z), where Z denotes the set of integers. In many practical
problems, one would be interested in knowing whether or not
the ran_om process {X(¢): t € R) is stationary. However, due to
the current digital trend 1n signal processing, one might attempt
to determine the stationarity of {X(nA). n € Z}. What if {X(nA):
n € Z} were stationary for any positive real number A? Would
this imply stationarity of {X(z): t € R}? We show by an example
that the answer to this second question is no.

Let {Y(t). 1 € R} be a stationary zero mean Gaussian random
process defined on some underlying probability space, such that
E[Y(t) Y(t + )] = e~ ", Define the stationary zero mean
Gaussian random process {Z(t): + € R} via Z{(1)=Y{(2t). Now,
define a zero mean Gaussian random process {X(¢): t € R} via
X(t)y=Y(t) if ¢ is rational, and X(1)= Z(t) if 1 is irrational.
Observe that {X(1): 1 € R} is not stationary since if ¢ and r are
rational, then E{ X(¢) X(t + t)]=¢~'", yet if ¢ is irrational and
t is rational, then E[X(1) X(z+ 7))=¢~ %" Next, pick any
positive real number A. Note that if A is rational, then nA is
rational for all integers n. Also, if A is irrational, then n4 is
irrational for all nonzero integers n. Further, Y(0) = Z(0) = X(0).
Hence, for all integers n, if A is rational, then X(nA)Y=Y(n4),
and if A is irrational, then X(nA)= Z(nA). Thus for any
positive real number A, {X(nA): n € Z} is a stationary Gaussian
random process, yet { X{(1): 1t € R} is a Gaussian random process
that is not stationary.

Manuscript received July 12, 1991. This work was supported by the
Office of Naval Research under Grant N00014-90-J-1712. This paper
was recommended by Editor R. Liu.

The author is with the Department of Statistics, University of Califor-
nia, Berkeley, CA 94720.

1EEE Log Number 9102901.
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J. Martingale characteristics of a Weiner process

Results on a martingale characterization of a Weiner process are
presented in the paper entitled "A counterexample to a martingale
characterization of a Wiener process" which was planned to have
been given in given in Appendix J. We hasten to note that this
investigator has recently gone through the trauma of having
experienced a stroke. Unfortunately, he lost all of his
documentation of this paper at some time during this experience.
However, the paper should appear in the journal Statistics and
Probability Letters, and in it we show that a recently proposed
scheme for characterizing a Wiener process was incorrect. We
regret this omission in this report.




K. Estimation of a random variable based on multidimensional data

Results on estimation of a random variable based on
multidimensional data are presented in the paper entitled
"Estimation of a random variable based on multidimensional data"
which appeared in the Proceedings of the 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing and is
presented in Appendix K. Several aspects associated with the mean
square estimation of a second order random variable based upon
elemenis from a random field are considered. Throughout the paper,
the oft-neglected role of the underlying probability space is
stressed. Numerous examples are presented that point out many of
the subtleties associated with this erideavor.
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ABSTRACT

Several aspects associated with the mean square
estimation of a second order random variable based upon
elements fror. a random field are considered. Throughout
the paper, 'he oft-neglected role of the underlying
probability space is stressed. Numerous examples are
presented that point out many of thz subteties associated
with this endeavor.

INTRODUCTION

Let N denote the set of positive integers and let X
denote the cardinality of N. Letk € Nandlete be s
positive number. Let S = {ke: k € NJ, and let G = SX. We
may view G as & grid of points. For points
=0t . ) € Cv.ands=(sl,sz.....sk)e G, we
\writessuomemv.hatsistiforizl.2....,k.Notc

that this relaiion is 8 partial order on G. This paper will
be concerned with attempts to estimate a second order
random variable X via estimates of the form

E[X 1 Yp: p S n], where the Yp's are random variables

mndexed by G. Notice that (Yp: p € G} is a random field.
Also, note that, in this situation,
{EX1 Yp: p<n)ne G} is a second order random field.
Let (£, ¥, P) be a probability space, let X be a
second order random variable defined on (2, F ., P), and
let (Yp: p € G} be arandom field defined on (A, F , P).
For each n € G, pick and fix a version of E[X | Yp: pSnl.
Forne G, let 9’n=c(Yp:pSn)and le&Mn=
E[X1F .]. As noted above, Mn is 8 second order random
variable. Further, M, is F ,,-measurable. Finally, note
that for ny and n) in G with nj Sy, E[an | fnl] =

E[E{X|Yp:p5n2]IYP:pSnllzi{XlYp:pSn1]=

M“l a.s. via standard properties of conditional

expeciation. Thus, we see that (M :n e G} is a second
order multiparameter martingale with respect to the
filration {F :n € G]. We remark that the above
comments hold where ({2, ¥, P) is any probability

space. Now we pose the question: how might one estimate
the random variable X from the data {Yp: p€ G)sossto
minimize the mean square =rror?

PRELIMINARIES

Before proceeding, we will review some definitions
and introduce some conventions and notations which will
prove useful. We will let B(R) denote the family of Borel
subsets of R. For a set S, we will let P(S) denote the
power sct of S and Ig denote the indicator function of 5.

We will let R denote the set of real numbers. If A is a

subset of R, -A will denote the set {x e R: —x € A}.Bya
standard Gaussisn measure we will mean a Gaussian
measure whose first moment is zero and whose second
moment is one. For any measure m on (R, B(R)) we will
let m, denote the inner measure on (R, P(R)) induced by
m and we will let m® denote the outer measure on

(R, P(R)) induced by m. Recall that for any subset A of R,
m, and m* wre defined viam,(A) =

sup{m(B): A>Be BR) ) and m*(A) =
nf{m@B): AcBe BR) }. We will say that a subset § of
the reals is saturated non-m-measurable if mq(S) = m(S)

= 0. We will let & denote Lebesgue measure on (R, B(R)).

Throughout this paper, we will let n and p, with or
without subscripts, denote elements of G; we will let m,
v, P, and t denote measures; we will let i, j, and k denote
positive integers; and we will let N denote an integr
greater than one.

Presented at the 1992 International Conference on Acoustics, Speech, and Signal Processing, March 23-26, 1992,
San Francisco, California; to be published in the Proceedings of the Conference.




The following resuit is developed in [1].

Theorem 1: Let N be an integer greater than 1. There
exist N subsets 5\, Sy, ..., Sy of the real line that

partition the reals and are each saturated non-Lebesgue
measurable. Letting Sy, ..., Sy be as above and letting p
be a probability measure on (R, B(R)) such that  is
equivalent o Lebesgue measure on (R, B(R)), there exists
a probability space (R, G, P) where G is given by
((5)NBy) V... U (SNNBp): Bie BR) fori=1, ..., N}
and where P((SlnBl)u c. u(SNr\BN)) =

Liu@p+...+u@y)

The following corollary is an immediate result of
Theorem 1.

Corollary 1: Let Theorem 1 set notation. The
o-algebra G includes B(R) and contains Sy,..., SN.
Further, the probability measure P agrees with 4 on B(R)
and, for the probability space (R, G.P), B(R) is
independent of a{Sy....,5N)

Further, we recall the following result from {2],
which calls into gquestion the validity of many claims in
mean square estirnation theory.

Theorem 2: For any real number B, there exists a
probability space (2, F . P), two bounded random
variables X and Y defined on (2, ¥ , P), and a function

f:R—R such that E{(Y - E{Y lX])zl >BandyetfX)=Y
pointwise on {l.

Now, we present an observation which will be of
use o us.

Lemma 1: Let the introduction set notation. If
n) $ny < ... is any nondecreasing infinite sequence of
elements from G, then the sequence of random variables
{E[X! Yn,:i= L 2.....j): je N} is a second order

1

martingale with respect to the filtration lfni: ie N}.

Proof: First, it follows from Jensen's inequality for
conditional expectations that

(E[XlYn.:i= 1.2.....]j]): je N} is a sequence of second
i
order random variables. Also, it follows from the
definition of conditional expectation that
EX1Y :i=12,....j]is _’}'nj~measurablc. Finally,
1
note that for positive integers j; < jo. it follows from

standard properties of conditional expectation that
E[E[XlYnl:i=l.2....,j1]l?'nj 1=
i 2

EIXIYn.:i=l,2,...,jl] as. Q.E.D.
i

DEVELOPMENT

The development will be » set of examples which
will serve to indicate some problems which may await the
unwary investigator. In panicular, these examples
suggest the importance of a careful cunsideration of the
underlying probability space.

EXAMPLE A: For m integer N> 1,Jet 5. ..., Sy be

subsets of the real line that partition the reals and are each
saturated non-Lebesgue measurable. Let (R, G, P) be the
probability space provided by Theorem 1 for these sets
where the measure ji in Theorem 1 is taken to be standard
Gaussian measure on B(R). All random variables in this
example will be defined on the probability space
R, G, P). La X(w) =Ig (@)~ Isg(m). Note that X is a

'y

Bemoulli random varisble, and P(X = -1) =1 - # and
PX=1)= # For some pg € G, let Ypo(u)) = gw, where o
is a positive real number, and for all other p's in G, let Yp
= 0. Note that {Yp: p € G) is a Gaussian random field.
Further, note that o[Yp: pe Gl = BR)and o(X) =
(2.0.5, S{}- Recalling Corollary 1, we see that X is
independent of the data {Yp: p € G). Thus, we see that Mn

=%’i a.s. for all n € G. Further, we see that P(Mn =X)=

0 for all n € G. However, if one knew py,, one could
reconstruct X precisely from Ypo via X = g(Y¥ Po) point-

wise on R, where g:R—R via g(x) = Isl(oi)- Ist]:(i}

Note that X can be precisely written as a function of an
independent random variable. Further, note that this can
be done regardless of how small or large the positive
variance of Ypo is, and P(X = 1) can be arbitrarily small

by choice of N. Of course, knowledge of py is crucial.

EXAMPLE B: In this example, we let the random
varisble X be Gaussian, and we get a result similar to that
in Example A. For an integer N > 1, let the probability
space be the same as in Example A, and Jet

X(w)= m{lsl - Isti]. For any real Borel set B, note that
P(X € B) =P((S; N B) U (S] N (-B))) = u(B), where j as

in Example A is standard Gaussian measure on B(R).
Thus, we see that X is a standard Gaussian random
variable. Let the random field (Yp: pe Gl beasin

Example A. Note that E{X | Ypo] = E[m{lsl - Ig§ 1&R)]

2-N . . .
= mE[lsl - lsg 1BR)] = m[T] as., since the identity

map is Borel measurable, since 8, is independent of




L ]

B(R), and since P(S,) =§f . In this case, we see that for

Po <n, Mn = w[?*?N-] s.s. Thus, when N = 2, Mp =0a.s.

for all p € G. On the other hand, for large N, M is close
no-mfoxpoSn. and PX=-w)=1 —)ﬁ . Nevertheless, we

have that P(M,, = X) = 0 for any n € G. However, we can
once again write X precisely as a function of Ypo. That is,

let hR—R via h{x) = (1‘6) g(x), where g is as in Example
A, and note that X = h(Yp()) pointwise on R.

EXAMPLE C: For an integer N > 1, let the probability
space be the same as in Example A. Let X(w) =

ofN ‘sl(“’) - ;ffl”s'i‘“’”' Notice that E[X] = 0. Also,
notice that if N = 2, X is a Gaussian random variable. Let
the random field {Yp: p € G} be defined via Yp(o)) =50
for each p € G, where [sp: p € G} is 2 set of nonzero real
numbers. Notice that in this case, (Yp: pe Gjisa

Gaussian random field, and each random varisble in this
random field has zero mean and a positive variance. Now,
what if we tried to estimate X from elements of the random

field {Yp: p € G}? Notice that o(Yp: pe€ G)= BR).
Further, notice that E[X | BR)] =
E[oNI5 (@ -I-q-N—lIS(I:(m)] | BR)] = 0 a.s., since the

identity map is B(R)-measurable, since S| is independent
of B(R), and since E[X] = 0. Thus, foranyne G, M, =0
as. However, notice that for any p € G, X can be written
precisely as a function of YP' That is, X(w) = rp(Yp(m))
where rp:R—-)R via

)N )R sl P

EXAMPLE D: In this example, assume k > 1, and let the
probability space (€2, F, P) be given by R, B(R), and
standard Gaussian measure on B(R). Let X(w) = @. Let d be
the element of G given by d = (£, €, .. ., £). Now, let
Y=ol . 1)(e), and for integers j > 1, let Y(id) =
® I(i—l. hiQE For n in G but not equal to positive
integral multiples of d, let Y, = 0. Now how might we
estimate X? Fix any point n in G, and for positive
mntegers i S k and positive integers j, let P be the point
whose coordinates are the same as those of ng except that
the i-th coordinate is the i-th coordinate of n, plus je.
Then (E{X1Y_,....Y, ] je€ N} is an ordinary

P Pj

martingale (see Lemma 1); indeed, in the context of
random fields, it is called an i-martingale. It follows

immediately that this martingale is equal to & fixed
random variable for all j greater than some positive
integer J. Further, note that the martingale does not
converge to X. Thus, forno valueof i= 1,2, ...,k
will this i-martingale converge 1o X. However, for
positive integers j, if we Jet q;= ., the martingale

[E[X!qu....,Yq‘):je N} is an ordinary martingale
J

(see Lemma 1); and it follows from elementary martingale
theory that this martingale converges in Lp(ﬂ. F . P), for

mny p € {1, «s), and a.5. as m~»ec 10 X; indeed, here it will
converge pointwise.

EXAMPLE E: For an integer N > 1, let the probability
space be the same 8s in Example A. Let X(w) =
co{lsl - Isgl. As in Example B, note that X is a standard

Gaussian random variable, Now, for eachn € G, let 5
denote the sum of the components of n, and let Y (©)
= @s,. Notice that {Yp: p € G) is a Gaussian random

field, and Yp has zero mean and a variance of (sp)z. Now,

for any p € G, as in Example B, Mp(m) = w[gﬁq as. If

N=2, weseethnMp=Oa.s. for all p € G. In any case,

Mp = E[X} Yq < p] must be a Borel measurable function of

®, since o(Yq: q<p)=B(R), and X is not & Borel

measurable function of @. Thus, once again, conditicnal

expectation is of no help o0 us here. However, for any

p € G, we can write X precisely as a function of Yp; that
Yy Y

is, X = ‘—P ;E) pointwise on R, where g is the function

P P

given in Example A.

EXAMPLE F: For an integer N > 1, let the probability

space be the same as in Example A. Let X(0) = @, and

note that X is a standard Gaussian random variable. For

some N distinct points py. py, ... . py I G, let Ypi(m) =

[ Isi(m). and for all other points p € G, let Yp = 0. Note

that X(w) = i YPi(m)' pointwise “n R. Further, for
i=1

certain points n € G, Mn(m) = X(w) pointwise on R, and

the cardinality of such points n is R. Note that if k > 1,

depending on the location of the N points

P}s Por -« - Py in G. there could exist & subset H of G

having cardinality X, such that M, =0 for aline€ H.

EXAMPLE G: For an integer N > 1, let the probability
space be the same as in Example A. Let X(®) = @, and note
that X is a standard Gaussian random varisble. For some N




points Py Pg. .- PNin G, et Ypi(w) =W Isi(m) +1,

N N
Note that X(@) = Z Ypi(m) ~N= n Ypi(m) -1
i=1 i=1
pointwise on R. Further, for certain points n € G,
Mn(m) = X(w) pointwise on R, and

card({n € G: M ()= X(w)forall v e R}) = RO.

EXAMPLE H: Let k be greater than one, and let
Q. F . P) be a probability space on which can be defined
a random field {Zp: p € G} of identicaily distributed,
mutually independent random variables each having a
probability density function given by

ifIxI>2

xXlog Ixh2
f(x) = og X

0 ifixi€2

where C is the normalizing constant, and a zero mean unit
variance Gaussian random variable X independent of

{Zp: p € G). Define the random field {Yp: pe G} via Yp =
Zp + X. Notice that the mean of Zp exists and is 2ero for

cach p € G. How might one anempt to estimate X from

k
the daia (Y, p € G)? Forte G,lett = ek | J;. witn
i=1
an eye on Kolmogorov's strong law of large numbers, one
might be tempted to try to estimate X via an estimale of

the form S(\n =Ll 2 Yp. Note that

inl
{pe G: psn}
in =X+ ILI Z Zp, and that the Zp’s have zero
n
{peG: p<n}

mean. Might we guess that X, should then converge to X,
in some meaningful sense? If so, we would be well advised
to guess again, since it follows from {3] (see also

[4. pp. 369-370]} for the k=2 case) that

I 1 = 00 8.§.
xmsup( | 2 ZP as

PG ™| (peG: pn)

EXAMPLE I: Consider the situation depicted in
Example H. Recall that G is a countable set, and let

{1,: n € NJ be an enumeration of G. Now, recalling

Kolmogorov's strong law of large numbers, note that
k

Jk- Z Yy, converges to almost surely to X as k — .

i=1

CONCLUSION

We have developed a st of examples pointing out
some caveats in the use of multiparameter martingales in
estimation theory. In particular, we noted some inswances
in which estimators existed which yielded superior
performance than estimators based on conditional
expectation. We hope these results will be of use 1o those
concerned with such endeavors.
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